
TECHNICAL NOTES ____________________________________________________ __ 

MATTHEW R. FEINSTEIN 

THREE-DIMENSIONAL RENDERING AS A TOOL IN 
SCIENCE AND ENGINEERING 

Specialized graphics hardware and standardized software libraries are making three-dimensional 
rendering a rapid and easy process. These advances have opened the way to using rendering to perform 
computations in short-wavelength scattering and propagation. 

INTRODUCTION 
As the power and capabilities of specialized computer 

graphics hardware have increased, computer-generated 
three-dimensional (3D) renderings of objects and scenes 
have become remarkably realistic, acquiring complex 
textures, perspective, lighting, atmospheric effects, and 
other characteristics that can all be varied in real time. 
From the standpoint of a scientist or engineer, however, 
an imbalance exists between graphics capabilities and 
graphics uses: we can render 3D scenes and objects 
rapidly and realistically, but the considerable program
ming effort and computer power that go into producing 
these effects contrast unfavorably with their limited (al
though commercially valuable) uses. 

Recent trends nevertheless suggest that the computa
tions underlying the entertaining graphics we see in 
movies and video arcades will become useful in science 
and engineering. Although specialized 3D graphics soft
ware and hardware have been available to graphics pro
fessionals for several years, the advances in technology 
that are lowering the cost, increasing the speed, and 
broadening the availability of personal computers are 
also putting sophisticated graphics tools on the desktops 
of many scientists and engineers. 

These tools have a broader utility than one might 
expect, since calculations repeatedly and quickly per
formed in modem 3D rendering are very similar to com
putations done (or that would be done if they were not 
so arduous) in many technical problems. For example, a 
classic difficult problem in short-wavelength scattering is 
the effects of shadows and blockage of one object by 
another, but computations of shadows, hidden surface 
removal, and viewable areas are easy and rapid with 
modem graphics workstations. Similarly, the effects of 
nonuniform lighting, illumination and shadows on 
curved surfaces, and averaging of multiple viewpoints of 
a scene involve difficult, time-consuming computations 
that are part of the repertoire of advanced computer 
rendering techniques. 

In the past, using dedicated computer graphics hard
ware for scientific computations would have required 
specialized knowledge. Major improvements, such as 
the development of hardware- and vendor-independent 

342 

libraries and the emergence of standards for 3D render
ing, have simplified the software interface between the 
programmer and the hardware. Trends in technology have 
brought high-powered graphics programming to nonspe
cialists, allowing the use of graphics hardware and soft
ware for many scientific and engineering purposes. 

A CASE STUDY 

The broader availability and lower cost of graphics 
tools lead one to ask when one should use advanced 
graphics hardware and software for computations. The 
trade-offs in performance, cost, and ease of operation are 
illustrated by a recent case study. 

A large, mature Fortran program was being used to 
render 3D scenes for a variety of analysis tasks. However, 
the analyst using the program was unhappy with its per
formance. Since the Fortran program was written for a 
generic UNIX computer but was running on a Silicon 
Graphics (SGI) workstation, it was reasonable to propose 
that the rendering task be done with the built-in SGI 
graphics hardware and graphics software libraries. This 
approach raised several questions. For example, what is 
the difference in performance between a generic program 
and one that uses specialized hardware and software? 
What is the difference in performance between low-end 
and high-end graphics workstations? 

We answered these questions by writing a functional 
equivalent of the older Fortran program using the same 
input files. The new program produced the same output 
files as the Fortran program but took advantage of the 
sophisticated graphics software library known as the GL, 
which comes with SGI computers. With the GL version 
in hand, the old and new programs could be compared 
on various SGr computers at APL. 

Table 1 lists the times taken to produce a scene with 
about 1 million facets for the two programs tested on 
two SGI computers. One can see that rendering speed 
depends strongly on computer cost, and, in particular, 
that a significant performance advantage exists for the 
GL program, but it appears only at the high end of the 
cost spectrum. One notable finding not displayed in the 
table is that the GL program was at least an order 

Johns Hopkins APL Technical Digest, Volume 15, Number 4 (1994) 



Table 1. Comparison of rendering speeds using two programs 
and two computers for a 1-million facet scene. 

Generic GL 
program time program time 

Computer (s) (s) 

SGI 4D/35 (low cost) 105 110 

SGI Onyx (high cost) 30 5 

of magnitude smaller and simpler than the older Fortran 
program. 

We have learned that rendering is a rather easy thing 
to do. This is a nontrivial lesson. One can expect that the 
cost and speed of a given computation will decrease over 
time, but one cannot expect that the computation will 
become simpler. 

STANDARDS FOR 3D RENDERING 
In the past year or two, candidates for standardized 

rendering libraries have emerged. For example, the GL 
only exists on SGI machines; however, an initial version 
of a vendor-independent GL, known as OpenGL, has 
been developed. 1,2 Another example of a vendor-indepen
dent rendering library is PEXlib.3,4 

The comparison of one rendering library to another is 
less significant than the trend toward standardization, 
which can be expected to continue. 

CONCLUSION 
"Three-dimensional rendering for the masses" is a re

ality, and it is now easy to make this technology part of a 

Johns Hopkins APL Technical Digest, Volume 15, Number 4 (1994) 

larger computation. In sum, we now have a new, simpler 
way of doing computations that would previously have 
required a long-term, large-scale effort. 

REFERENCES 

IOpenGL Architecture Review Board, OpenGL Reference Manual, Addison
Wesley, Reading, MA (1993). 

20penGL Architecture Review Board, OpenGL Programming Guide, 
Addison-Wesley, Reading, MA (1993). 

3 Graff, M. , PEXlib: A Reference Manual, Prentice-HaU, Englewood Cliffs, NJ 
(1994). 

4Womak, P. , PEXlib: A Tutorial, Prentice-Hall , Englewood Cliffs, NJ 
(1994). 

THE AUTHOR 

MATTHEW R. FEINSTEIN re
ceived B.S. and M.Eng. degrees 
from Cornell University in engi
neering physics in 1970 and 
1971 , respectively, and a Ph.D. in 
applied physics from Yale Uni
versity in 1976. He is a physicist 
in the STW/ASUW Missile Sys
tems Group in the APL Fleet 
Systems Department and a mem
ber of the Senior Professional 
Staff. Since joining APL in 1978, 
Dr. Feinstein has worked on 
variational techniques in scatter
ing theory, measurement and 
modeling of polarization aberra-
tion due to radomes, and develop
ment of multi port monopulse ra
dar algorithms. 

343 


