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equal in size to the original pooled sample. In one variant 
of the bootstrap method, the eO bootstrap, those pattern 
vectors not sampled constitute the test set, and the error 
rate on that set is the estimate of the true error rate for 
the sample. Typically, many of these partitions are gen­
erated, and the average of the estimated sample error rates 
defines the estimated population elTor rate. 

Although such resampling methods are computation­
ally very expensive, they are no longer infeasible. These 
powerful method can and should be adopted by the 
developer of classifiers. The computational burden 
is even greater for sampling methods, because the 
effects of learning rate and momentum terms, as well as 
the effects of initial random weights, for example, must 
also be taken into account. 

Although such methods permit accurate estimates of 
the true error rate, they do not give us the weight matrix 
that results in that error rate; obviously, the weight vec­
tors cannot be merely averaged over all samples. Thus, 
the suggestion that weight training should stop once the 
error rate on the te t set becomes flat or begins to increase 
is still valid. In other words, the weight-stopping strategy 
is relevant once one needs a set of weights to solve the 
problem that the classifier was designed to solve. The 
resampling methods give good estimates of the true error 
rate, but they cannot provide an actual set of weights. 

CONCLUSIONS 
Developers of applications that employ NN compo­

nent have much to gain by incorporating the tools that 
are routinely u ed by statisticians. Neural networks are 
powerful tools , but using them well requires foresight and 
careful interpretation. Best result require a consideration 
of the architecture, appropriate transformations of the 
input and output vectors, sampling methods, trategies 
for selecting the final weight matrix that avoid the over­
learning effect, and the most appropriate performance 
measures. The approaches suggested here can serve well 
but, like any set of rules , slavish devotion is to be avoided 
if the particulars of a situation dictate principled change 
to them. 

Neural network cla ifiers should not be looked at as 
competitors to classical approaches, but rather as exten­
sions of them. As classifiers prove their worth, it is 
hoped that tatistician will embrace them as one more 
set of useful statistical tools. 
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