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to extract the target in Figure lOB, and Figures lOA and 
10C are similar enough that we suppose dimension es
timation should work on both. 

Computing the Dimension Image 
from the Infrared Image 

We compute the dimension image using the Hurst di
mension estimation algorithm, previously described, 
which is easily extended to two dimensions by finding 
the range of the image intensity value over a square area 
rather than an interval. 

The image in Figure lOA can be thresholded imme
diately to segment target from background. Figures IIA 
and lIB show Figure lOA thresholded at gray levels of 
170 and 160, respectively. In Figure lIB the reader can 
discern the T-38 location and outline, but it is unlikely 
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Figure 11. Examples of simple threshold sensitivity. A. The 
image of Figure 10A thresholded at 170. B. The image of Figure 
1 OA thresholded at 160. 
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that an image processing algorithm could do so generally. 
When we compare Figure lIB with Figure lOB, we see 
that the clutter structure is similar and thus we suppose 
that the clutter in Figure lOA is infrared skylight reflec
tion from the sea surface or some similar phenomenon. 
Figure II A shows Figure lOA thresholded at a higher 
level, and we see that whereas the number of false de
tections is greatly reduced, we have also lost the outline 
of the T-38. 

Figure 12A is the dimension image computed from the 
image in Figure lOA by the Hurst method, with ranges 
measured over intervals of {I, 2, 4, 8, 16, 32}. The 
dimension at a pixel is computed from the log-log slope 
of the average ranges over these intervals. Figure 12B is 
the result of thresholding the dimension image at D ::::: 2.0. 
The bounding polygon in Figure 12A represents a border 
about 16 pixels from the jet outline proper. Note that the 
interior of the bounding polygon has D ::::: 2.0, whereas 
most of the remaining image has 2.5 D < 3, as we 
would expect. 

Let us compare the two methods of segmentation
thresholding the irradiance image versus thresholding the 
dimension image: 

1. The threshold for the dimension image is selected on 
first principles , since the dimension of the jet should be 
D ::::: 2.0, whereas an irradiance threshold is selected from 
image statistics. 

2. The thresholded dimension image provides an out
line of the target. The thresholded irradiance image gives 
only a few pixels on the target when the threshold is low 
enough to give a reasonable false-alarm rate. 

3. The method using estimation of dimension is rela
tively simple, although not as simple as thresholding the 
irradiance image. 

B 

Figure 12. Locating the jet with fractal dimension. A. The dimension image corresponding to Figure 10A. The outline bounds a region 
of low dimension. The strip to the left is the dimension-to-gray scale correspondence. B. The dimension image thresholded at 0"" 2.0. 
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The selection of threshold on a priori dimension dif
ference between target and clutter fosters robustness in 
the segmentation. Target outline may be better than target 
hot spot in endgame guidance, since the best aim point 
is not always the hottest spot on the target. Finally, di
mension images probably can be computed in flight hard
ware within time, size, power, and weight constraints, 
since the algorithm is so simple. 

FUTURE DIRECTIONS 
Although fractal dimension estimation has been used 

for segmentation of images, unresolved practical issues 
remain. Dimension estimates should give good results 
when applied to small data sets, determine over what 
range of scales the estimate holds, work when the obser
vations include modest high-dimensioned noise, and 
have low computational complexity. I have performed a 
numerical experiment to investigate these problems and 
have found an estimator, called the Hurst estimate, that 
gives good results on one-dimensional fractal approxima
tions. I demonstrated a technique for fmding scaling re
gions for the estimate. When the estimator was extended 
to the two-dimensional case, I was able to segment an 
airplane from a cluttered image. 

My work so far has addressed the issues of noise, short 
data records, best estimators, and object shape in image 
segmentation. Many issues remain to be addressed, such 
as characterizing the fluctuation of dimension estimates 
around the true dimension of an image, and implemen
tation of matched filters on dimension images. Work on 
practical implementations (e.g., algorithm design and po
tential for application-specific integrated circuit imple
mentations) of these algorithms is yet to be undertaken, 
but the approach discussed in this article holds promise 
for new missile signal processing applications. 
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