




the interior of the annulus. Of course, we have no reason 
to believe that a uniform distribution of () on [0, 27r] 
should result in a uniform distribution of eigenvalues in 
A( A I). What initial distribution of () in the random mul
tiplication procedure described above would result in a 
uniform distribution of eigenvalues in A(A)? Does this 
distribution depend on A? 

The plot in Figure 1 makes it appear that A(A I ) = 
'DCA I) . On this basis, one might be tempted to conjecture 
that equality holds in general in Equation 4; that is, A (A) 
= 'D(A) for all A. But consider what happens to 'D(AI) if 
we replace the (2, 1) element of A I by some smaller val
ue, for example, 

. 
Figure 2 shows the result of repeating the computa

tional experiment on A2 . Note that the Gerschgorin disks 
are now distinct, but D2 c D I. Hence, the region 'D(A2) 
is the same as 'D(A I). However, Figure 2 reveals quite a 
different distribution of eigenvalues than in Figure 1. It 
appears that A(A2) is strictly smaller than 'DCA I). 

Might the computational experiment simply fail to 
discover some of the points in A (A 2 )? The answer is no. 
Consider the limiting case of shrinking the (2 , 1) ele
ment, namely, the 2 x 2 matrix 

Since the eigenvalues of a triangular matrix are simply 
the diagonal elements, the region A(A) is just the circle 
of radius 2 centered at the origin, whereas 'D(A) is still 
unchanged. 

One final example will indicate the importance of 
continuity of the eigenvalues. As discussed previously, 
continuity implies that the region A(A) is the union of 11 

annuli centered at the origin. As we have just seen in the 
last example, these annuli may in fact degenerate to cir
cles. Nevertheless, a second part of Gerschgorin's the
orem will allow us to make further claims concerning the 
number of disjoint annuli making up the region A(A). 

Theorem 4 (Gerschgorin, part II). If the union of m of 
the disks Di is disjoint from the remainder of the disks, 
that union contains exactly m eigenvalues of A. 

Corollary 1. If the region 'D(A) consists of k disjoint 
annuli , the region A(A) must consist of at least k disjoint 
annuli. 

To see this, recall that an annulus of 'D(A) is formed 
by sweeping the disks Di around the origin. Each disjoint 
annulus of 'D(A) must have been formed from the union 
S of a subset of disks that are disjoint from the remainder 
of the disks. Hence, S must contain at least one eigen
value of A (indeed, by Theorem 4, part II, it must contain 
exactly m eigenvalues, where m is the number of disks in 
the union S). Thus, A(A) must have a nonempty compo
nent (annulus) contained within the annulus formed by 
rotating S about the origin. 
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Figure 3 shows the result of the computational experi
ment on a matrix with three disjoint annuli in 'D(A 3), cor
responding to the matrix 

1 
9 
1 

. 
16 

As seen from Figure 3, the region A(A3) consists of three 
disjoint components, as required by the previous discus
sion. 

In contrast, Figure 4 shows the results on a matrix 
with three overlapping annuli in 'D, corresponding to the 
matrix 

1 
5 
1 i] 

Evidently, the region A(A4) consists of a single annulus, 
consistent with the fact that the Gerschgorin disks of A4 
all overlap. 
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Since tho e di k overlap-and hence the region 
'D(A4) ha only one connected component-the corollar 
to Theorem 4, part II, ay nothing about how man di
joint annuli A(A4) can contain. Thi lead naturall to the 
following que tion: I the con er e of Corollar 1 true? 
That is , if 'D(A) con i t of k di joint annuli, mu t A(A) 
also have exactl k di joint component ? 

A simple counterexample how that the an wer i no. 
Consider the matrix 

[

l.9 

A- = ~ 
1 
2.1 
o 

Since As i upper triangular the region A(A-) is ju t the 
un ion of the three circle centered at the origin with radii 
l.9, 2.1, and 2. These are clearly di joint 0 A(As) ha 
three disjoint component . The three Ger chgorin di k 
corresponding to As are, however, the di k centered at 
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l.9 with radiu 1, the di k centered at 2.1 with radius 1, 
and the di k centered at _ with radiu 0 (i .e. the point 2). 
Clearly, the region 'DCA:) fo rm d b rotating these disks 
about the origin form a ingle annulu with inner radius 
0.9 and outer radiu .1. 

CO CLUSIO 

Sharp bound on th eigen alue of a general com
plex matrix in term of it lement do not now exist. Al
though Ger chgorin ' th orem i not the sharpest known 
bound, other bound ( uch a the I-norm and oo-norm 
bound ) that are aloin ariant with respect to unit 
change in the entrie of the original matrix are also in-
ufficient to categorize A(A). We claim that empirical in
e tigation uch a tho de cribed in the preceding sec

tion . ho e er, an offer in ight into the behavior of the 
eigen alue of a matri a it undergoe unit changes. Fu
ture. more methodical computational in e tigation into 
thi di tribution of eigen alue may yield tronger 
re ult for bounding the pectrum of a general comple 
matrix. 
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