














With this technique, he could analyze the data and deter­
mine the kinetics of the proce s. A typical paint (black 
Chemglaze Z306 with 9924 primer) was the sample ma­
terial. The results show that the condensable product was 
collected at a rate of about 6A/day; most of it was water 
and a small amount of it wa low-molecular-weight or­
ganic material (under 150 amu). Analysis of the data 
showed that outga ing i a diffu ion-controlled process 
after the highly volatile surface layers have been evapo­
rated. Becau e many of the instruments being designed 
and flown operate at temperatures lower than the 398 K 
of the ASTM E 595 te t, the values from low-temperature 
testing are of much greater interest. Several other authors 
have presented data obtained with a thennally controlled 
QCM at temperatures of 298 K, 220 K, and 159 K. 

Because all spacecraft use multilayer in ulation (ther­
mal blanket) materials for thennal control, Glassford et 
al. 12

.
13 have evaluated outgassing of typical materials by 

thelmal vacuum conditions. Their data show the outgass­
ing rate of several material at 298 K with the CYCM be­
ing collected on a cooled QCM. Several of the samples 
were given a 24-hour vacuum bakeout at temperatures 
between 298 K and 423 K; the result showed a decrease 
in the outgassing rate after the thermal vacuum 
bakeout. 13 The bakeout at 353 K produced the lowest 
outgassing results. This high-temperature bakeout is not 
possible in many cases, because of temperature limita­
tions of substrate materials. 

It is important to under tand elf-contamination of 
critical optical surfaces during the design and materials 
selection phases of flight instrument development. Scial­
done 14 performed a basic study of elf-contamination by 
the outgassing of various space payloads. He showed 
that an engineering estimate of the outgassing rate can be 
calculated by using the fom1ula 

Q = Qo exp [- EIR( liT - liTo)] Torr· lIs . 

where R is the gas constant ( 1.987 cal/mol/K), E is the 
activation energy of the "compo ite" outgassing mol­
ecules (cal/mol) , Q i the unknown outgassing rate (in 
liters per second), Qo is the known outgassing rate , and T 
is temperature in kelvins, as related to the two Q's. Scial­
done stated that this fonnula will produce satisfactory 
results as long as the temperature of the systems are 
relatively close (10 K to 20 K). 

SUMMARY 

This article has summarized space environmental in­
formation used by materials engineers to select construc­
tion materials appropriate for spacecraft and their com­
ponents, including the individual instruments, electronic 
boxes, and so on. The discus ion has centered on the ef­
fects of atomic oxygen and thermal vacuum on those 
materials. The effects of atomic oxygen are most pro­
nounced and destructive in the low Earth orbit and be­
come less so a the orbit becomes higher than 500 to 600 
km (see Fig. I ) . But even in the LEO range, spacecraft 
surfaces and component can be protected by careful 
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selection of materials and the use of specific protective 
coatings. At the higher altitudes, the orientation of the 
materials in relation to the ram direction i important and 
must be taken into consideration. The effects of thennal 
vacuum on materials selection are also important be­
cause critical surfaces can deteriorate seriou ly from out­
gassed products condensing onto them. Thelmal vacuum 
effects are present at all altitudes . Using the best avail­
able materials becomes most important when the critical 
surface is operated in low temperatures (below O°C). 
Several optical instruments now in the design phase and 
being flown operate at temperatures of -30 DC and lower; 
therefore, careful selection and thennal vacuum condi­
tioning of the materials must be carried out. For opera­
tion at these lower temperatures, it is also advisable to 
predict the degree to which the construction materials of 
an instrument will be subject to self-contamination of the 
instrument. 

In January 1990, the Long Duration Exposure Facility 
(LDEF) was recovered by the space shuttle and returned to 
Earth after nearly six years in low Earth orbit. The LDEF 

was designed and flown to evaluate many materials in 
various configurations, under controlled and uncon­
trolled conditions, in LEO. Preliminary evaluations of the 
"as-flown" materials confilm the results of atomic oxy­
gen effects found on the shuttle experiments : atomic 
oxygen does degrade critical surfaces, and protective 
coatings must be used to reduce those effects. 

In conclusion, spacecraft materials engineers and 
others concerned with materials in space mu t be 
knowledgeable about the effects of atomic oxygen and 
thermal vacuum on the construction materials of all com­
ponents of the spacecraft and its various payloads. They 
must also be aware of the exact thermal and pre sure 
conditions that may be encountered, the spacecraft 's or­
bit and angle of inclination , the operational lifetime of 
the mission , and the ground processing conditions. By 
giving all of these factors due weight, they ensure that 
the materials selected are those best suited to the require­
ments of the spacecraft, the payload, and the mission. 
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