




















Blum, Sleight - A n Overview of Software Engineering 

Software Reuse 
The concept of software reuse was first perceived in 

the context of a program library. As new tools have been 
developed, the goal of reusable components has expand­
ed. For example, Ada packages that encapsulate ab­
stracted code fragments can be shared and reused. The 
artificial-intelligence-based knowledge perspective also 
suggests ways to reuse conceptual units having a gran­
ularity finer than code fragments and program libraries. 
Finally, the extension of 4GL techniques provides a 
mechanism for reusing application-class conventions with 
a natural human interface. 

Training and Domain Specialization 
All software development requires some domain 

knowledge. In the early days of computing, the program­
mer's knowledge of the new technology was the key, and 
the domain specialist explained what was needed. To­
day, almost every recent college graduate knows more 
about computer science than did those early program­
mers. Thus, there is an emphasis on building applica­
tions. As more tools become available, one can expect 
software developers to divide into two classes. The soft­
ware engineer will, as the name implies, practice en­
gineering discipline in the development of complex soft­
ware products, such as embedded applications and com­
puter tools for end users. The domain specialists will use 
those tools together with the domain knowledge to build 
applications that solve problems in their special environ­
ment. We can see this trend in the difference between 
Ada and the 4GLs. Ada incorporates powerful features 
that are not intuitively obvious; the features are built on 
a knowledge of computer science and must be learned. 
The 4GLs, however, offer an implementation perspec­
tive that is conceptually close to the end user's view. The 
software engineer builds the language; the domain spe­
cialist uses it. 

WHAT OTHERS SAY 
What do the experts in software engineering say about 

the future of this discipline and the hope for significant 
improvements in productivity? In explaining why the 
Strategic Defense Initiative is beyond the ability of cur­
rent (and near-term) software practice, Parnas 15 offered 
a negative critique of most research paths. He said that 
the problem involves complex real-time communication 
demands, adding that there is limited experience in 
designing programs of this architecture and magnitude 
and that there is no way to test the system thoroughly. 
No ongoing approach, he concluded, could overcome 
these difficulties. 

286 

Boehm, I in an article on improving productivity, was 
more positive. Speaking of state-of-the-art software ap­
plications, he offered this advice: write less code, reduce 
rework, and reuse software-especially commercially 
available products, where possible. 

Brooks 16 discusses the possibility of improving soft­
ware productivity. He has catalogued research directions 
in some detail and concluded that the biggest payoff 
would come from buying rather than building, learning 
by prototyping, building systems incrementally, and­
most important to him-training and rewarding great 
designers. Of those four recommendations, the first 
reflects the spinning off of tools that can be used by do­
main specialists, and the next two relate to the need to 
build up knowledge about an application before it can 
be implemented. The last of Brooks's positive approach­
es recognizes that software design (like every other crea­
tive activity) depends on, and is limited by, the individu­
al's ability, experience, understanding, and discipline. 

REFERENCES and NOTES 
lB. W. Boelun , " Improving Software Productivity," IEEE Computer 20, 43- 57 
(1987). 

2B. W. Boelun, "A Spiral Model of Software Development and Enhancement, " 
IEEE Computer 21 , 61-72 (1 988). 

3B. W. Boehm, " Industrial Software Metrics Top 10 List," IEEE Software, 
84-54 (Sep 1987). 

4Two books that are highly recommended are R. Fairley, Software Engineer­
ing Concepts, McGraw-Hill , New York (1985) and R. Pressman, Software 
Engineering: A Practitioner's Approach, 2nd ed ., McGraw-Hill , New York 
(1 987). 

5 Ada is a registered trademark of the U.S . Government, Ada Joint Project 
Office. 

6DOD-STD-2 167A, "Military Standard Defense System Software Develop­
ment," (29 Feb 1988). 

7MIL-STD-1 679 (Navy), "Military Standard Weapon Software Development," 
(I Dec 1978). 

8SEC AVINST 3560.1, "Tactical Digital Systems Documentation Standards," 
(8 Aug 1974). 

90 . F. Sterne, M. E. Schmid, M. J . Gralia, T. A. Grobicki, and R. A. R. 
Pearce, "Use of Ada for Shipboard Embedded Applications," Annual Wash­
ington Ada Symp., Washington, D.C. (24-26 Mar 1985). 

lOS. J. Mellor and P . T. Ward, Structured Development for Real-Time Systems, 
Prent ice-Hall, Englewood Cliffs, N.J. (1986). 

II R. J. A. Bahr, System Design With Ada, Prentice-Hall, Englewood Cliffs, 
N.J . (1984). 

12G. Tice, "Looking at Standards from the World View," IEEE Software 5, 
82 (1988). 

l3V. G. Sigillito, B. I. Blum, and P . H . Loy, "Software Engineering in The 
Johns Hopkins University Continuing Professional Programs," 2nd SEI Conf. 
on Software Engineering Education, Fairfax, Va. (28- 29 Apr 1988). 

14 J. Foreman and J . Goodenough, Ada Adoption Handbook: A Program 
Manager's Guide, CMO/ SEI-87-TR-9, Software Engineering Institute (May 
1987). 

15 D. L. Parnas, "Aspects of Strategic Defense Systems," Commun. A CM 12, 
1326- 1335 (1 985). 

16F. P . Brooks, "No Silver Bullet," IEEE Computer 20, 10-19 (1 987). 

ACKNOWLEDGMENTS-The authors gratefully acknowledge the very 
helpful suggestions of J . E. Coolahan , M. J . Gralia, R. S. Grossman, and J . G . 
Palmer. 

f ohns Hopkins A PL Technical Digest, Volume 9, N umber 3 (1988) 



THE AUTHORS 

BRUCE I. BLUM was born in New 
York City. He holds M.A. degrees 
in history (Columbia University, 
1955) and mathematics (University of 
Maryland, 1964). In 1962, he joined 
APL, where he worked as a pro­
grammer in the Computer Center. 
During 1967- 74, he worked in pri­
vate industry, returning to APL in 
1974. His special interests include in­
formation systems, applications of 
computers to patient care, and soft­
ware engineering. From 1975-83, he 
served as director of the Clinical In­
formation Systems Division, Depart­
ment of Biomedical Engineering, 
The Johns Hopkins University. 

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988) 

Blum, Sleight - An Overview of Software Engineering 

THOMAS P . SLEIGHT received 
his Ph.D. from the State University 
of New York at Buffalo in 1969. Be­
fore joining APL, he spent a year 
as a postdoctoral fellow at Leicester 
University, England. At APL, Dr. 
Sleight has applied computers to sci­
entific defense problems. He has 
served as computer systems techni­
cal advisor to the Assistant Secretary 
of the Navy (R&D) and on the Bal­
listic Missile Defense Advanced 
Technology Center's Specification 
Evaluation Techniques Panel. He 
has participated in the DoD 
Weapons Systems Software Manage­
ment Study, which led to the DoD 

directive on embedded computer software management. Dr. Sleight served 
as supervisor of the Advanced Systems Design Group from 1977-82 in 
support of the Aegis Program and the ANIUYK-43 Navy shipboard 
mainframe computer development and test program. Since 1982, he has 
served in the Director's Office, where he is responsible for computing 
and information systems. 

287 


