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As also shown in Fig.  1, the space weather broad-
cast from the Probes observed that Earth’s radiation 
belts, recently pumped up by a substantial storm that 
occurred about a week before, were effectively swept 
away or diminished by the response to a storm caused by 
the coronal mass ejection. The real-time space weather 
data provided reassurance that just prior to the Juno 
closest approach, the electron radiation of Earth’s outer 
radiation belt would not challenge the Juno instruments. 
Juno did, however, transit the stable inner proton belt. 
Juno scientists and engineers used the passage through 
the inner proton belt to characterize the efficiency of 
subsystem and instrument shielding within a very pen-
etrating radiation environment. Specifically, Becker 
et  al.10 report possible radiation-produced interference 

results from Juno’s Stellar Reference Unit (SRU) and 
Advanced Stellar Compass (ASC) navigation units as 
well as the JunoCam Education and Public Outreach 
camera, as these imaging results are correlated with 
high-energy proton measurements from both the Juno 
and Van Allen Probes particle investigations. Gladstone 
et al.11 reported on proton penetrations of the shielding 
for the ultraviolet auroral imager on Juno. All of these 
examinations showed that Juno is prepared for the radia-
tion environment that will be encountered at Jupiter.

Space weather scenarios such as those described 
above are at the heart of the LWS program—to better 
understand the Sun–Earth interaction and its conse-
quences and to enable improved predictions and space-
craft design. The response of Earth’s radiation belts 
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Figure 1.  A Van Allen Probes space weather display especially configured to include the trajectory of NASA’s Juno spacecraft.
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to changing geomagnetic 
storm conditions is a primary 
scientific goal of the twin 
Van Allen Probes’ mission; 
advanced models are being 
produced to assimilate the 
Probes’ real-time data and 
then predict the radiation 
environment (e.g., Reeves 
et al.12). Often the radiation 
belts’ response appears to be 
widely different to seemingly 
similar solar wind or geo-
magnetic forcings. Satellite 
operators require real-time 
information to determine 
whether system effects and 
anomalies are caused by 
the natural environment or 
other possible factors. The 
broadcast information from 
the Van Allen Probes is a 
critical addition to the LWS 
system and is a significant 
stride forward in under-
standing, now-casting, and 
eventually forecasting the 
radiation environment.

DESCRIPTION OF 
THE PROBES

Each spacecraft broad
casts space weather data in 
real time through the pri-
mary spacecraft RF science 
downlink system whenever 
it is not engaged in science data downlink. Users who 
maintain and fund their own ground station antennas 
receive the data. This scenario is limited by the avail-
ability of space weather ground stations and antenna 
coverage. The real-time coverage is reduced by an aver-
age of 2.5 h for each spacecraft per day, or about 10% of 
the time, because of the other primary mission contacts. 
However, often when one of the spacecraft is broadcast-
ing the primary science data, and therefore not broad-
casting space weather data, the other spacecraft will still 
be broadcasting space weather data because many of the 
contacts with each spacecraft do not overlap in time.

Each of the Probes’ payload instruments participates 
in the real-time space weather broadcast. The data 
include particle intensities at a variety of energies, as 
well as magnetic and electric field data. In addition to 
the real-time products, the project creates “quick-look” 
products to be produced by each of the individual instru-

ment science operations centers. These products essen-
tially fill in the gaps caused by times when the broadcast 
data cannot be received and also provide a more com-
plete data set for use in diagnosing anomalies in low 
Earth orbit and mid Earth orbit.

The spacecraft pointing geometry, orbit, and spin 
stabilization determine communication system require-
ments. Earth’s location, as viewed from the spacecraft, 
covers a very broad angle space (mast angle) as shown 
in the Probes’ communications antenna angle coverage 
plot in Fig.  2. Contact geometry necessitates onboard 
antennas that have broad angular coverage and thus 
relatively low gain.

The coverage is maximized within practical limits 
by using two low-gain antennas. The two RF antennas’ 
boresights are aligned with the spacecraft spin and anti-
spin axes, providing coverage from each boresight to 70°. 
Despite maximizing the antenna coverage, there is still 
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Figure 2.  Regions of the Probes’ orbits where communications downlinks are robust, variable, and 
impossible. The communications configuration changes over time because of the roughly 220° 
per year of clockwise (from the north) local time precession of the line of apogee.
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weather forecasting for the radiation belts. As the name 
implies, DREAM uses a powerful data-assimilation 
technique (specifically ensemble Kalman filtering) to 
calculate a global specification of the radiation belt 
environment that optimizes the match between the 
model and observations. Unlike traditional models that 
use “inputs” or “boundary conditions,” data assimilation 
considers uncertainties in both the model and observa-
tions. The modeling uses core conditions (internal state) 
to extrapolate outside of the observation region; second 
“observations” should not be used.

DREAM uses a Fokker–Planck diffusion formulation 
(Reeves et al.12; see also Ukhorskiy and Sitnov13) as the 
physics engine that advances the forecast in time. At 
the time of this writing, data assimilation has only been 
implemented in the 1-D (radial diffusion) version, but a 
3-D version with radial, energy, and pitch angle diffu-
sion is undergoing testing. The radial diffusion calcula-
tion solves for phase space density (PSD) as a function 
of three magnetic invariants: μ, K, and L* (invariants 
of gyration, bounce, and drift; again see Ukhorskiy and 
Sitnov13). DREAM first preprocesses data from intensity 
(as a function of energy, E, and pitch angle, ) to PSD as 
a function of μ, K, and L*. (As part of the standard Probes 
data processing, μ, K, and L* will be calculated along the 
satellite orbits using a variety of different magnetic field 
models and values and will be made available for analy-
sis.) Data assimilation runs are done at each time step 
for each μ, K pair (typically 324 independent assimila-
tions). In an asymmetric (and time varying) magnetic 
field, each point in space and time has a unique trans-
formation from physical to magnetic coordinates. The 

same is true for the reverse transformation that takes 
the DREAM assimilation and converts back to intensity 
(versus E and ).

 Figure 3 (from Reeves et al.12) shows an example of 
the incorporation of the PSD measurements shown on 
the left to create a prediction (on the right) for the PSDs 
throughout the radiation belt regions. The Van Allen 
Probes will give the predictions more fidelity by filling 
in many of the gaps between and inside of the present 
measurement positions.

The result is a model that gives the space weather fore-
cast for the radiation belts—intensity, flux, and fluence, 
or dose—at any point in the radiation belts based on a 
very limited set of observations. For space weather fore-
casting, the model can be relatively simple with few (or 
no) free parameters—for example, 1-D radial diffusion 
with DLL(Kp), such as is now available with DREAM. 
For detailed scientific analysis, more complex models 
with 3-D diffusion and many free parameters will prob-
ably be needed with, for example, spatial and temporal 
distributions of wave power, frequency, and wave normal 
angle for a variety of wave modes. One of the goals of 
the Probes project is to evolve space weather products 
from the current state of now-casting with simple models 
to more sophisticated products that use more complex 
physics models (balancing accuracy and complexity) and 
provide forecasts days or more into the future.

SUMMARY
The two spacecraft that compose NASA’s LWS Van 

Allen Probes mission continuously broadcast space 
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Figure 3.  An example of the capability of the DREAM model12 to assimilate sparse spacecraft measurements (left) together with empiri-
cal particle transport and energization algorithms to generate predictions of the overall state of Earth’s electron radiation belt. The plots 
show the magnetospheric parameter L* (y axis) versus time (x axis) versus particle PSD (color scale), calculated from the particle intensity 
and the particle momentum. (Reproduced from Ref. 12.)
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weather data, except during prime science download 
and maneuvers. These data were selected to monitor the 
state of the radiation belts and to be incorporated into 
models such as DREAM that will lead to better space 
weather forecasts. The Van Allen Probes were designed 
to operate throughout the worst conditions expected in 
the hazardous radiation belt environment.14,15 By design, 
the mission will make observations over the full range of 
particle energy levels and frequencies needed to decipher 
the mysteries described elsewhere.3 The Probes are poised 
to significantly enhance our understanding of radiation 
belt dynamics with changing solar wind conditions and 
will enable the prediction of extreme and dynamic space 
conditions; they also provide the understanding needed 
to design satellites to survive in space for future missions.
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